Industry sponsors:
HOME | NOTEBOOKS | Tablets | Handhelds | Panels | Embedded | Rugged Definitions | Testing | Tech primers | Industry leaders | About us
Sponsors: Advantech | Dell Rugged | Getac | Handheld Group | Juniper Systems | MobileDemand
Sponsors: Motion Computing | Samwell Ruggedbook | Trimble | Winmate | Xplore Technologies

« Talking with Paul Moore, Fujitsu's Senior Director of Product Development | Main | Windows Mobile and the vertical markets »

February 16, 2010

A look at Intel's new Core i3/i5/i7 processors and how they will affect rugged computing

Just when most manufacturers of rugged mobile computers have switched from earlier platforms either to Intel Atom or Core processors, Intel raises the ante again with new Atoms and the next generation of Core processors. In essence, the Core 2 Duo that has served the mobile community long and well is being replaced by a next generation of mobile chips with higher performance, newer technology, better integration, improved efficiency, and smaller package sizes.

The new Intel Core i3, Core i5 and Core i7 processors come in numerous versions with two or four cores, clock speeds ranging from 1.06 to 3.33 GHz, maximum power dissipation of 18 to 95 watts, different process technologies, different degrees of integration and different complementing chipsets.

Unfortunately, while the difference between Intel's older Core 2 Solo and Core 2 Duo processors was pretty obvious, differentiating between the Core i3, Core i5 and Core i7 chips can quite confusing. As a rule of thumb, the 3/5/7 sort of represent Intel's "good," "better," and "best" processor solutions in any given category just like BMW makes 3, 5, and 7 series cars (though the analogy only loosely applies). Core i3 processors, for example, do not have the Intel TurboBoost feature that provides extra performance via automatic overclocking and seems more than just a marketing feature. Core i7 processors generally have more cache and support more of the special Intel features and technologies than Core i5 and Core i3 processors. There is, however, more than a bit of overlap in functionality and performance, and figuring out which one is best suited for a task won't be simple.

As of February 2010, Intel has announced about three dozen of the new Core i3/i5/i7 processors. About a third of them are designated as embedded processors, which makes them especially interesting for for embedded systems designers due to considerations such as package size, structural integrity, error correcting code memory, system uptime as well as, and perhaps most importantly, an 7-year extended life cycle.

Intel has always had an excessive fondness of code names, and it's no different with the new Core processors. It's therefore useful to know that Intel distinguishes between generally desktop-oriented "Piketon" platforms that use either two core 32nm "Clarkdale" processors or four core 45nm "Lynnfield" processors (and usually have TDPs that makes them unsuitable for most mobile applications), and mobile "Calpella" platforms that use two core 32nm "Arrandale" processors with lower thermal design powers (generally 18 to 35 watts).

So let's take a quick look at Calpella and Piketon.

In essence, "Calpella" is Intel's new "low power" platform, though there is now a much sharper differentiation between the really low power Atoms and the low power but rather high performance new Core processors. The Calpella class "Arrandale" CPUs are based on the latest 32nm lithography. They are are essentially the successors of the mobile Core 2 Duo CPUs and come in standard, low voltage, and ultra low voltage versions at various processor clock speeds.

There are, however, some interesting differences: As a first in this class of Intel CPUs, the memory controller and reasonably powerful integrated graphics with HD hardware acceleration and other new capabilities are now part of the processor, which means no more conventional Front Side Bus and "Northbridge" part of the chipset complementing the processor. These integrated graphics can be turned off when they are not needed, and Nvidia (who is probably not that thrilled about this Intel move) has already announced their "Optimus" technology (see what it is) that automatically determines whether to use the integrated graphics and extend battery life, or use an external NVIDIA GPU to boost graphics.

Like the Core 2 Duos, "Arrandale" processors have two cores but the new chips use Intel's HyperThreading technology that act like virtual cores, making the operating system think it is dealing with four cores. The new chips also add L3 cache while the Core 2 Duo chips only had L1 and L2 cache. They require DDR3 RAM that supports higher speeds (up to 1,333MHz). An interesting new technology is Intel "TurboBoost" that automatically steps up processor core speed if it detects that the CPU is operating below certain power, current, and temperature limits.

The new embedded Intel Core i5/i7 processors range from ultra low voltage models with a base clock frequency of 1.06GHz and a Thermal Design Power of 18 watts to low voltage models with base clock frequency up to 2.0 GHz and TDPs of 25 watts, and standard voltage models with base clock frequencies as high as 2.66GHz and 35 watt DTP. This means they're suitable primarily for higher end, high performance rugged notebooks and tablets, but not for lower end systems that require the still significantly lower power draw of Atom-based prcessor technology (or emerging alternate solutions such as the Nvidia Tegra).

"Piketon"-class processors also include a variety of Intel's new Core i3, Core i5, and Core i7 CPUs but unlike the "Arrandale" versions they are mostly standard voltage, higher-powered chips that include both older 45nm technology "Lynnfield" versions of the chips (four cores but no integrated graphics) as well as newer 32nm "Clarkdale" versions with two cores and integrated graphics. These are performance-oriented processors with TDP ratings of 73 to 95 watts and thus unsuitable for most mobile applications.

What about performance? We haven't had a chance at benchmarking any rugged systems with the new processors yet. Intel and other benchmarks of all new Core processors suggest a hefty 30-60% performance increase over equivalent Core 2 Duo processors at roughly the same TDP levels. Literature and previews also suggest that the performance of the integrated graphics processor is improved by perhaps about 50% over that of the predecessor GM45 platform. There is also said to be better 3D performance, high definition video hardware acceleration, audio and other advancements.

It should be interesting to see who is first in making the new i5/i7 chips available and how they'll work out in rugged systems.

For a comparison table of all Intel Core i3/i5/i7 released through January 2010, see here.

Posted by conradb212 at February 16, 2010 06:22 PM