Industry sponsors:
Home | Notebooks | Tablets | Handhelds | Embedded | Panels | Definitions | Leaders | About us
RuggedPCReview Industry Sponsors:
Cincoze | Durabook Americas | DT Research | Getac Technology | Handheld Group | Janam Technologies
Juniper Systems | MobileDemand | RuggON | Trimble | Teguar Computers | Winmate | Zebra

« The needless demise of the netbook | Main | When the fire chief wants iPads instead of rugged gear »

February 7, 2013

Not your father's Celeron

In my last blog article I wrote about the needless demise of netbooks, and how that demise was due more to the fact that people loved the rock-bottom price of netbooks but then found them too small and lacking in performance, so they asked for more size and performance. The industry complied with larger, more powerful netbooks, but that meant they cost more and netbooks weren't netbooks anymore. So people stopped buying them. I also wrote how, in my opinion, Intel's inexpensive Atom processors both made the netbook by making the low price possible, but then contributed to the demise of the netbook with their often unacceptable performance. Unfortunately, the unacceptable performance level of Atom processors also affected a lot of other industrial and vertical market devices based on Atoms.

So we have this unfortunate situation: Atom processors (of which there are by now about 50 different models) don't cost a lot, usually well under US$100, with some in the US$20 range. But they are also very marginal performers, so much so that not only netbook vendors abandoned them, but also a good number of vertical market manufacturers which quietly switched to "real" Intel Core processors. Unfortunately, even the low-end mobile Core i3 chips cost in the low US$200 range, and mobile Core-i7 chips usually closer to US$400. Those are huge price differences with major impacts on low-cost consumer electronics (though one would think far less impact on much higher priced vertical market computers where the processor makes for a much lower percentage of the overall purchase price).

What that all means is that there's an unfortunate gap between the inexpensive but rather underpowered Atom chips, and the beefy but much more expensive Core processors. (Oh, and while I'm at it, here's basically the difference between the by now three generations of Intel Core chips: First gen: good performance, but power hogs with insufficient graphics. Second gen: good performers with much better gas mileage but still sluggish graphics. Third gen: good performance, economical, and much better graphics.) But now to get back to the big gap between Atoms and Core processors: there's actually something in-between: Celerons and Pentiums.

Celerons and Pentiums? But weren't Pentiums old chips going back to the early 1990s and then being replaced by Core processors? And weren't Celerons bargain-basement versions of those old Pentiums? Yes that's so, but there are still Celerons and Pentiums in Intel's lineup, and they are NOT your father's Celerons and Pentiums, they are now slightly detuned versions of Core processors. They should really call them Core-i1 or some such.

But let me explain, because those new-gen Celerons and Pentiums may well be one of the best-kept secrets in the processor world. If you go to the Intel website and look up their mobile processor lineups, you'll find them neatly organized by generation and then by Core Duo, Core 2 Duo, i3, i5, and i7. Celerons are still listed as either Celeron M Processors or Celeron Mobile Processors. The Celeron Ms are old hat and many go back a decade or more. The Celeron Mobile processors, however, include many models that are much newer, with the Celeron 10xx low and ultra-low voltage models launched in Q1 of 2013, i.e. as of this writing. I would have never noticed this, and probably would have continued thinking of Celerons as obsolete bargain processors, had it not been for an Acer mini notebook I just bought as a replacement for my vintage (2008) Acer Aspire One netbook.

You see, my new Aspire One has an 11.6-inch 1366 x 768 pixel screen and is really still a netbook, with netbook looks and a netbook price (I bought it as a refurb for US$250), but it has a Celeron instead of an Atom processor. The 1.4GHz Celeron 877, to be exact, introduced Q2 of 2012, and an ultra-low voltage design with a thermal design power of 17 watts. It uses the Sandy Bridge architecture of the second gen Core processors, and reportedly costs about US$70, no more than a higher end Atom chip, and only about US$25 more than the Atom N2600. Now how would that work, a real Sandy Bridge, non-Atom chip in a netbook?

Turns out very well.

The Celeron-powered little Acer ran a 1,261 PassMark CPU score compared to Atom-powered devices in our rather comprehensive benchmark database reaching from a low of 163 (Atom N270) to a high of 512 (D510). The Celeron ran CrystalMark memory benchmarks between two and five times faster than the Atoms, and CrystalMark GDI benchmarks between three and five times faster. The Celeron 877 netbook also powered through most other benchmarks much faster than any Atom-based device. As a result, by netbook standard this new son-of-netbook absolutely flies. And it handles HD video, a big sore sport with early netbooks, without a problem.

But what about battery life and heat? After all, most of those mobile Atom chips have minuscule thermal design power of between two and five watts (with the exception of the D510, which is at 13 watts) whereas, though designated a "ultra-low power" chip, the Celeron's TDP is 17 watts. Reviews on the web complain about insufficient battery life of this particular Acer Aspire One (the AO756-2888). Well, that's because to keep the price low, Acer gave this netbook only a wimpy 4-cell 37 watt-hour battery. Most earlier netbooks had beefier 6-cell batteries.

In real life, our benchmark testing always suggested that Atom power management was relatively poor whereas ever since Sandy Bridge (second gen) Core processor power management has been excellent. So the difference between Atom and Core-based power consumption can be a lot less than one would assume based on TDP alone. And that was exactly what I found with the Celeron in this new Acer netbook. BatteryMon power draw (with WiFi on), was as little as 6 watts. That's actually LESS than what we have observed in a good number of Atom-powered devices (and also less than my old 2008 Atom N270-powered Acer netbook). Sure, the top end of the Celeron-based machine is so much higher that it can draw down the battery quicker than an Atom device, but under normal use, the Sandy Bridge guts of the Celeron handle power management very, very well. As for heat, my new little Acer has a quiet fan, but it actually stays cooler and the fan comes on less often than that in my 2008 Atom-based netbook.

I am not an electric engineer and so my conclusions about relative processor performance come from benchmarking, real life experience, and perusing Intel's tech specs. Based on that, I'd have to say the Pentium and Celeron versions of Intel's Core processors deserve a whole lot more attention in the mobile space. I don't know what it actually looks like at the chip level, but it feels like Intel starts with essentially one design, then adds features here and there (like all the extra Intel technologies in the Core i7 chips) and omits or perhaps disables those them in lower level chips. As a result, the inherent goodness and competence of an Intel Core chip generation may be available in those little-known Celeron and Pentium versions, if not all of the features of the more expensive SKUs.

What does that all mean? Obviously, for those who need to run the latest and most 3D-intensive video game at insane frame rates, only the very best and most expensive will do. And the same goes for those who absolutely need one or more of those extra features and technologies baked in or enabled in i5 and i7 chips. If that is not an issue, the Celeron versions may just be a very well kept secret and a terrific bargain. The Celeron 877 sitting in my lowly new netbook absolutely runs rings around any Atom-based device, and it does so without even trying hard and while treating battery power as the precious commodity it is.

So.... if I were a designer and manufacturer of vertical market industrial and rugged devices, I'd think long and hard before committing to yet another underpowered Atom chip that'll leave customers underwhelmed before long, and instead check what else Intel may have in its parts bin. There are some real bargains there, good ones.

Posted by conradb212 at February 7, 2013 4:02 PM