Industry sponsors:
Home | Notebooks | Tablets | Handhelds | Embedded | Panels | Definitions | Leaders | About us
RuggedPCReview Industry Sponsors:
Cincoze | Durabook Americas | DT Research | Getac Technology | Handheld Group | Janam Technologies
Juniper Systems | MobileDemand | RuggON | Trimble | Teguar Computers | Winmate | Zebra

« The Microsoft Surface mystery | Main | Congrats to Xplore Technologies: 20 years of rugged tablets, and only rugged tablets »

August 9, 2016

Why we take things apart and show what's inside

At RuggedPCReview, we take things apart. We open up handhelds, tablets, panels, notebooks and industrial PCs. We dissect them methodically, documenting our progress, jotting down observations and commentary. What we find inside a product becomes part of our detailed reviews, including pictures of the insides and of interesting details.

We do this because ruggedness isn't something that's just skin-deep. Truly rugged mobile computing devices are designed from the ground up to be tough and rugged and being able to handle the various kinds of abuse they may encounter in customers' hands (and falling out of customers' hands). While the outsides of a successful consumer product must look good and appeal to the eye, a rugged product must look good inside, too, and by "look good" we mean designed and built to handle abuse. For us here at RuggedPCReview, that means it's mandatory to look inside and describe what we find. Else we wouldn't do our job.

We've felt this way for a very long time. Ever since, back in the mid 1990s, we reviewed a tough-looking tablet its manufacturer said was specifically designed for the military and operation under the harshest conditions. It looked very tough indeed, but when our editors took it apart, it was like a half-finished science project inside. There were wires and loose connectors everywhere, things were not fastened in place, seals were inadequate or non-existent, and the internal layout and organization did not make sense. There was no way that product was going to hold up out there in the field. Not surprisingly, that company went out of business shortly thereafter.

It was then that we decided to review what's inside a rugged device as carefully as we describe and document what's outside. We love taking pictures that show off a product out there in the muck, rain, water, snow or ice, because those are the extreme conditions rugged computing products are being designed for. But we also show what's inside. Because what's inside, the computer, is what the tough and rugged exterior must protect, and even the hardest shell cannot protect the guts of a rugged system if it's not designed and built right inside.

By and large, the guts of today's rugged products are far, far better than we've seen in the past. We used to see plenty of seals that could not possibly seal, plenty of connectors that could not possibly stay connected, plenty of parts that were certain to break, plenty of layouts that were too complex to work, and plenty of cooling systems that could not stay cool. We saw plenty of foils, conductive material, seals, screws and soldering that could not possible survive even the first time the unit was taken apart for repair or maintenance. We saw plastic clips that would break, screw sockets that would fail, seals done wrong (or omitted entirely), and materials that simply made no sense.

It is better now, and perhaps our many years of documenting and discussing what's inside rugged systems how they are made, has contributed in a small way to that progress. And even if not, it has probably helped raise awareness of interested parties in what's inside of all those important and often costly tools for tough jobs, tools that must not fail.

The vast majority of manufacturers we have worked with over the years understands that. Most take pride in the internal quality of their products and appreciate our documentation of the insides of their products with photography that's often much better than what even the FCC does.

But every once in a while, we're told we must not open a device or must not publish pictures of what's inside. Stated justification for the former may be that a unit is sealed and opening it would destroy the seal and reduce or eliminate ingress protection. We don't consider that a good argument for two reasons. First, we can't recommend a product when we're not even allowed to look inside. And second, if seals break when the unit is taken apart, that makes service expensive, difficult and inconvenient, big negatives all.

We've also had a very few requests not to publish interior pictures because then the competition would know how it's done and steal the design. That, likewise, we do not consider a good argument. If the competition is indeed concerned enough to want to know what's inside a product, they will simply buy one and see for themselves (that happens all the time, everyone does it). But what if designs are "stolen"? Still not a good argument; one cannot easily copy an entire design from a picture. We're not talking rearranging Lego blocks here.

By and large our experiences with the industry have been overwhelmingly good. Almost everyone is helpful and genuinely concerned about making the best possible products. Project managers, in particular, take great pride in the designs they are entrusted with. Most love to share, discuss issues, answer questions, and appreciate feedback. Most marketing people we work with are also great sources of information as well as helpful conduits to/from technical staff and PMs.

Reader and site visitor feedback is uniformly in favor of detailed reviews that show both the outside and the insides of the products they are interested in. It helps them make more educated purchasing decisions.

So that is why we here at RuggedPCReview take things apart and show what it looks like inside. We could save ourselves a lot of time and effort not doing it, but then we wouldn't be doing our job. And we wouldn't do a favor to manufacturers who often learn from our third-party analysis, and we certainly wouldn't do a favor to our readers.

Posted by conradb212 at August 9, 2016 5:18 PM